Thinking Outside of the Box: The Ongoing Need for Microbiology Expertise in the Era of MALDI-TOF MS

Chicago, IL November 3, 2019

Carey-Ann Burnham, PhD, D(ABMM), FIDSA, F(AAM) Professor of Pathology & Immunology Washington University in St. Louis School of Medicine

Illinois Society for Microbiology Fall Meeting

Washington University in St.Louis

Learning Objectives

- Discuss the advantages and limitations of MALDI-TOF MS for identification of microorganisms recovered in culture
- · Communicate the impact of MALDI-TOF MS on informing the clinical significance of emerging pathogens
- Review approaches to implementation of MALDI-TOF MS and result reporting in a routine clinical setting

"Challenging" Organism Identifications

- Objective:
 - Evaluate the analytical performance of MALDI-TOF MS for the most challenging microorganisms
- 174 bacterial isolates
 - 148 were sent-out for identification (frozen stock) • 4-51 days
- · 26 required multiple methods to be identified (fresh)
- 85% of isolates identified to species level with MALDI-TOF MS
- · Five of the isolates not identified by MALDI-TOF not identified by 16S rRNA gene sequencing (i.e. possible novel species!)

McElvania TeKippe and Burnham. 2014. Eur J Clin Microbiol Infect Dis. 33:2163-2171.

JCM

Prospective Evaluation of a Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System in a Hospital Clinical Microbiology Laboratory for Identification of Bacteria and Yeasts: a Bench-by-Bench Study for Assessing the Impact on Time to Identification and Cost-Effectiveness

K. E. Tan,³ B. C. Ellis,^b R. Lee,^b P. D. Stamper,³ S. X. Zhang,^{3,b} and K. C. Carroll^{3,b}

- MALDI-TOF MS vs. standard protocols, 12 week study
- Overall accuracy of MALDI-TOF MS identifications >98%
- Cost savings—consumables for identification
- 54% reduction in cost with MALDI-TOF MS
- Time to identification: Average of 1.45 days earlier with MALDI-TOF MS compared to conventional methods

Tan et al. J Clin Microbiol 2012. 50: 3301-3308

	MATRIX ASSISTED I ASER DECORPTIO	
	TIME-OF-FLIGHT (MALDI-TOF) MASS SP	ECTROMETRY
This section Test Method developed te	applies to laboratories using MALDI-TOF systems to perform or Validation section in the All Common Checklist for validation re sts.	rganism identification. Refer to the quirements pertinent to laboratory-
MIC.16575	Instrument Operation	Phase I
	There are written procedures for the operation and calibration	ation of the mass spectrometer.
MIC.16595	Mass Spectrometer Calibration	Phase II

Microbiology Expertise is Still Needed!!!

- · Old name/new name (when getting it right has clinical implications)
- · When getting it right has AST implications
- Biosafety
- When MALDI-TOF gets it wrong

Old name/new name (when getting it right has clinical implications)

Impact of MALDI-TOF MS on the Clinical Laboratory

- Clinical laboratory experience (Jan 2002 to Dec 2012)
 - French hospital
 - 500,179 bacterial identifications
 - Compared conventional phenotypic identification to MALDI-TOF MS identification

Conventional Phenotype (91 Months)	MALDI-TOF (40 Months)
44 species identified annually	112 species identified annually
19 species/10,000 isolates	36 species/10,000 isolates
	Seng et al. Journal Clin Microbiol 2013, 51: 2182-219

Case #1: Friend or foe?

- 34 year old woman from Mexico presents with granulomatous mastitis of the left breast
 Painful, progressively worse over 14 months
- Multiple biopsies and cultures
 Incision and drainage revealed many pus-filled cavities
 Surgical pathology demonstrated granulomatous inflammation
- The patient was treated by multiple physicians and subspecialty services
- Corynebacterium kroppenstedtii was recovered from cultures at multiple time points
- Documented in medical record that "no need for antibiotics, Corynebacterium is just skin flora"
- Patient was ultimately assessed by an ID provider and was treated with antibiotics for >2 months, abscesses resolved

Johnson et al. 2016. J Clin Microbiol. 54: 1938-1941.

"Diphtheroid-like" organisms in clinical specimens • MALDI-TOF MS--rapid and accurate species level identification of Gram-positive bacilli (Reported as "coryneform" or "diphtheroids" in the past) "New" organisms with emerging disease associations · Important to know disease associations so they are not dismissed as contaminants · Many species are multi-drug resistant

Bernard et al. 2012. J Clin Micro. 50: 3152-3158. Leal et al. 2016. J Clin Micro. 54: 2928-2936. Johnson et al. 2016. J Clin Micro. 54: 1938-1941. McMullen et al. 2017. AAC. 61(11). pii: e01111-17.

Clinically Important Corynebacterium spp. Species Corynebacterium diphtheriae, C. ulcerans, C. pseudotuberculosis Diphtheria Kidney stones (urease activity) Corvnebacterium urealvticum Corynebacterium jeikeium Nosocomial infection, line infection, multi-drug resistance Corynebacterium macginleyi Conjunctivitis Corynebacterium kroppenstedtii Granulomatous mastitis Corynebacterium striatum Device infection, blood stream infection, multi-drug resistant Corynebacterium pseudodiphtheriticum Pneumonia Turicella otitidis and Corynebacterium auris Otitis media Bernard et al. 2012. J Clin Micro. 50: 3152-3158. Leal et al. 2016. J Clin Micro. 54: 2928-2936. Johnson et al. 2016. J Clin Micro. 54: 1938-1941. McMullen et al. 2017. AAC. 61(11). pii: e01111-17.

Candida auris: A drug-resistant germ that spreads in healthcare facilities

Candida auris (also called *C. auris*) is a fungus that causes serious infections. Patients with *C. auris* infection, their family members and other close contacts, public health officials, laboratory staff, and healthcare workers can all help stop it from spreading.

- · Can be very resistant to antifungal agents
- · Mortality is high in the setting of invasive infection
- · Difficult for clinical laboratories to identify

https://www.cdc.gov/fungal/diseases/candidiasis/pdf/Candida_auris_508.pdf

the Globe in a Climate of Secrecy

The rise of Candida auris embodies a serious and growing public health threat: drug-resistant germs.

https://www.nytimes.com/2019/04/06/health/drug-resistant-candida-auris.html

Why is Candida auris such a problem?

- Can cause serious infections
 - Blood stream infections · Mortality is high in the setting of invasive infection
- Can spread in healthcare settings
- · Prolonged survival on surfaces
- + Grows well at elevated temperatures (40 to 42 $^{\circ}\mathrm{C})$
- Typically very resistant to antifungal agents
- · Difficult for clinical laboratories to identify May be misidentified or unidentified

Identification of	Candida auris
Methodology	Likely to be identified as
All methods	Candida haemulonii, Candida spp. not otherwise identified
API 20C	Rhodotorula glutinis, Candida sake, Unidentified
API Candida	Candida famata
BD Phoenix	Candida haemulonii, Candida catenulata
bioMerieux VITEK 2 YST	Candida haemulonii, Candida duobushaemulonii, Candida lusitaniae, Candida famata, Saccharomyces cerevisiae
MicroScan	Candida famata, Candida lusitaniae, Candida guilliermondii, Candida parapsilosis, Candida albicans, Candida tropicalis, Candida catenulata
Sequencing (28S D1/D2 or ITS)	Candida auris
MALDI-TOF MS	Candida auris Not identified
Mizusawa et al. 2017. J Clin Microbic Spivak et al. 2017. J Clin Mi	 N. 55: 638-640. Jeffery-Smith et al. 2018. Clin Micro Revs. 31: e00029-17. crobiol. 56. 2: e01588-17. Bao et al. 2018. J Clin Microbiol. 4: e01700-17. Ambaraghassi et al. 2019. J Clin Microbiol. PMID: 31413079.

Candida auris isolate panel

Candida auris (21)

A panel of Candida auris isolates and other yeast species that are related to C. auris or are commonly misidentified as C. auris.

Caution: Candida auris has been shown to be transmitted in healthcare settings. It is a good colonizer of skin and can live for up to four weeks on fornites. Gloves and gowns should be worn when working with C. auris, and work in a hood or a biological safety cabinet is recommended to avoid laboratory contamination. As quaternary ammonia compounds may not be effective, 10% bleach should be used for cleaning the work area.

https://wwwn.cdc.gov/ARIsolateBank/Panel/Allisolate

When the specific identification has implications for antimicrobial susceptibility testing

Staphylococcus intermedius group

- Member of oral, nasal, and skin microbiota in healthy dogs
- "The Staphylococcus aureus of dogs and cats"
- Also pigeons, minks, horses, raccoons, goats
 The leading cause of skin and soft tissue infections in dogs (canine pyoderma)
 - Can also cause invasive disease
 - Colonization is a risk factor for infection

Lainhart et al. 2018. J Clin Microbiol. 56: e00839-17.

Staphylococcus intermedius group

- First report of human infection not associated with an animal bite in 1994
- Very little in the literature since then (until recently)
- True incidence of human infection is unknown because it has historically been <u>misidentified</u> as S. aureus

Lainhart et al. 2018. J Clin Microbiol. 56: e00839-17. Yarbrough et al. 2018. J Clin Microbiol. 56: pii: e01788-17.

Multi-Center Study—AST for S. intermedius group

- Emory, UCLA, Washington University, Texas A&M College of Veterinary Medicine
- 115 isolates
- 45 isolates from human infections
 4 (9%) mecA positive
- 70 veterinary isolates
 - 33 (52%) mecA positive

Wu et al. 2016. J Clin Microbiol. 54:535-542.

System/Panel	<i>S. aureus/S. lu</i> oxacillin break	<i>gdunensis</i> point	S. intermedius group oxacillin breakpoint							
	CA (%)	No. (%) VME	CA (%)	No. (%) VME						
BD Phoenix PMIC-8	90.4	11 (30)	95.7	4 (11)						
bioMerieux Vitek2 AST-GP71	93.0	8 (22)	98.3	1 (3)						
Beckman Coulter MicroScan Pos MIC 29	95.7	5 (14)	99.1	0 (0)						
0/37 mecA positive isolates were cefoxitin resistant on ANY of the commercial systems										
CA-Category Agreement VME-Very Major Error (categorized as su	sceptible when resis	tant)								
		Wu et al	2016. J Clin N	Wu et al. 2016 Clin Microbiol 54:525.542						

SIG--Commercial Automated AST Systems

Susceptibility Testing

- Jan 2016—CLSI M100--specific testing guidelines for *S. intermedius* group (SIG)
- Even though S. aureus and SIG share a high degree of phenotypic and genetic similarity, methods for detection of methicillin resistance are different
- Demonstrates the importance of species specific breakpoints for some organism/antimicrobial combinations

Detection of Methicillin Resistance in *Staphylococcus* spp.

	Acceptable Methods					
Organism	Cefoxitin MIC	Cefoxitin disk diffusion	Oxacillin MIC	Oxacillin disk diffusion	Oxacillin sal agar	
S. aureus	Yes	Yes	Yes	No	Yes	
S. lugdunensis	Yes	Yes	Yes	No	No	
S. epidermidis	No	Yes	Yes	Yes	No	
S. pseudintermedius	No	No	Yes	Yes	No	
S. schleiferi	No	No	Yes	Yes	No	
Other Staphylococcus spp. (not listed above)	No	Yes	Yes	No	No	
For other Staphylococcus spp. with oxac	illin MICs between 0.	.6-2 µg/mL, see com	ment (17) for recomm	endations on testing	for mecA or for PE	

Emerging Staphylococcal Species

 Staphylococcus aureus Complex with 3 members

- Complex with 3 memorys
 Staphylococcus argenteus
 Southeast Asia, Australia, the Amazon
 Predominantly human associated
 memoryseries
- Staphylococcus schweitzeri
 Africa
 Predominantly associated with wildlife
 S. argenteus and S. schweitzeri in some MALDI databases
- All complex members can carry mecA
- Misinterpretation of microbiology reports could have important patient care consequences
- Stay tuned!

Chantratita et al. 2016. Clin Microbiol Infect. 22: 458.e11-458.e19. Becker et al. 2019. Clin Microbiol Infect. 25(9):1064-1070.

Clinical Case #2: A wolf in sheep's clothing

- 8 year old boy
- Presented to emergency room in Connecticut with fever, nausea, vomiting, body aches
- Traveled to Egypt with his family 3 months prior
- Blood culture was collected
 - Aerobic bottle: Coagulase-negative Staphylococcus
 - Anaerobic bottle: Bacillus species, not Bacillus anthracis
- · One day later, another blood culture set was collected

Poonawala et al. 2018. J Clin Microbiol. 6: e00914-17

Second blood culture set...

- Aerobic bottle was positive after ~60 hours of incubation
- Small Gram-negative rods
- Growth on chocolate and blood agar after 18 h of incubation (no growth on MacConkey agar)
- Oxidase positive
- 99.9% Ochrobactrum anthropi
 - VITEK MS, FDA-cleared IVD database, "claimed" organism

Poonawala et al. 2018. J Clin Microbiol. 6: e00914-17

Thoughts?

- · Consider all of the positive blood culture results contaminants?
- Perform additional testing?
- Collect more blood cultures?
- Treat the patient for Ochrobactrum anthropi?
- Other ideas?

Case #2 continued...

- The ID and GI teams considered all of the cultures to be contaminants • Patient was discharged home
- Patient was re-admitted 3 days later with fever, fatigue, abdominal discomfort and diarrhea
 Given empiric trimethoorim-sulfamethoxazole
- He was readmitted 4 days later with persistent fever, abdominal pain, nausea, vomiting, and diarrhea
 MRI revealed lesions in skeleton, hepatosplenomegaly

Poonawala et al. 2018. J Clin Microbiol. 6: e00914-17

Case #2 continued...

- · Additional blood cultures were sent
- A Brucella serology from the first visit was resulted (IgG 1:1,280)
- Parents of child disclose exposure to sheep and consumption of unpasteurized milk while in Egypt
- After 4 days of incubation, blood cultures positive with Gram-negative coccobacilli
 - Sent to state laboratory; Brucella melitensis
- Re-testing of isolate reported as *O. anthropi* by state laboratory: *Brucella melitensis*

Poonawala et al. 2018. J Clin Microbiol. 6: e00914-17

Case #3: Vacation Souvenir

- 65 year old man who suffered a myocardial infarction while on vacation in Thailand
- Hospitalized for 7 days before returning to USA
- Symptoms of UTI about 1 week later; prescribed nitrofurantoin
- Symptoms did not improve; urine specimen was sent for culture
- After 24 hours of incubation
 Small colonies on blood agar plate, no growth on MacConkey
- After 48 hours of incubation
 Pure growth of a small gray colony; growing well on both blood agar and
 - MacConkey agar
 Oxidase positive

Dingle et al. 2014. J Clin Microbiol. 52:3490-3491.

Case #3 continued

- MALDI-TOF MS (MALDI Biotyper): • Burkholderia thailandensis (Score 1.8)
- Thoughts?
 - Report as *Burkholderia* species?
 Perform additional testing?
 - Refer to public health lab?

Dingle et al. 2014. J Clin Microbiol. 52:3490-3491.

Case #3 continued MALDI-TOF MS and Potential BT Agents • Isolate referred to public health lab • Identified as Burkholderia pseudomallei • Select agents are absent from or scant in most of the MALDI-TOF MS databases • Each laboratory needs to understand what is (and is not) in the database • 21 laboratory employees were exposed • Each laboratory needs to understand what is (and is not) in the database • Max get no identification • Francisella • Brucella • Brucella • Dingle et al. 2014. J Clin Microbiol. 52:3490-3491. Cunningham et al. 2013. J Clin Microbiol. 51: 1639-1640.

MALDI-TOF MS and Potential BT Agents

· Laboratory needs clear rule in/rule out procedures

- · Gram negative coccobacilli that do not grow on MacConkey agar
- · Microorganisms that do not identify
- Maintain a list of potential misidentifications that should raise alarm for potential select agents

Cunningham et al. 2013. J Clin Microbiol. 51: 1639-1640. Poonawala et al. 2018. J Clin Microbiol. 6: e00914-17. Dingle et al. 2014. J Clin Microbiol. 52:3490-3491. When MALDI gets it wrong....

Clinical Case #4: Imposter Syndrome

- 8 year old girl
- History of interstitial lung disease and pulmonary hypertension being evaluated for lung transplantation
- As part of her evaluation, a tracheal aspirate specimen is submitted for culture

Direct specimen Gram stain:

- Rare polymorphonuclear leukocytes
 No squamous epithelial cells
- No squamous epithelial cells
 Rare Gram Negative Coccobacilli

Growth in Culture

- Growth on blood agar and chocolate agar
- No growth on MacConkey agar
- Isolate was submitted for MALDI-TOF MS

F	Res Result C	ults from Overview	m MALDI-TOF N	1S		
100	Sample Name	Sample ID	Organism (best match)	Score Value	Organism (second-best match)	Score
	<u>B7</u> (+++)(A)	BTS (BTS)	Escherichia coli	<u>2.31</u>	Escherichia coli	2.31
	<u>B8</u> (-) (C)	6392 (standard)	No Organism Identification Possible	<u>1.35</u>	No Organism Identification Possible	<u>1.27</u>
	<u>B9</u> (+++)(A)	NM2 (standard)	Neisseria meningitidis	2.38	Neisseria meningitidis	2.35

Rank (Quality)	Matched Pattern	Score Value	NCBI Identifier
1 (+++)	Neisseria meningitidis CCUG 63283 CCUG	2.38	487
2 (+++)	Neisseria meningitidis 24086406 MLD	2.35	487
3 (+++)	Neisseria meningitidis DSM 25942 DSM	2.31	487
4 (+++)	Neisseria meningitidis CCUG 8661 CCUG	2.31	487
5 (+++)	Neisseria meningitidis Serogroup W135 BRL	2.29	487
6 (+++)	Neisseria meningitidis DSM 15464 DSM	2.29	487
7 (+++)	Neisseria meningitidis Serogroup A BRL	<u>2.28</u>	487
8 (+++)	Neisseria meningitidis Serogroup X BRL	2.22	487
9	Malanzia annianti dia Companya V BP1	222	487

What should we do next?

- Report as Neisseria meningitidis?
 Send to state public health laboratory
 Call infection prevention
- Report as normal upper respiratory flora?
- Perform additional testing?
- Something else?

Neisseria meningitidis

- Meningitis, blood stream infection

 ~10-15% of infected individuals will die, even with treatment
 - ~20% of survivors will have long-term complications (such as loss of limb(s), deafness, nervous system problems, brain damage)
- Pneumonia/isolated respiratory infection very rare

https://www.cdc.gov/meningococcal/about/diagnosis-treatment.html Winstead et al. 2000. Clin Infect Dis. 30:87-94.

Naisseria meningitidis • Utilizes glucose and maltose • 13 serotypes • Most common serogroups: A, B, C, Y, W135 • Us: Most disease B, C, Y • Serogroup W and nongroupsle strains-smallportion of disease • Uto 30% of people are asymptomatically colonized in respiratory tract • You 50% of people are asymptomatically colonized in respiratory tract • Milliary • College dommitories • Milliary • College dommitories

Neisseria polysaccharea

- Described in 1983
- Utilizes glucose, maltose
- Produces polysaccharide from sucrose • Stains dark blue-purple to black with iodine

Previously (mis)identified as nontypable strains of *N. meningitidis*Not pathogenic

https://www.cdc.gov/std/gonorrhea/lab/npol.htm https://www.cdc.gov/std/gonorrhea/lab/tests/polysac.htm

Differentiation of N. meningitidis and N. polysaccharea

Characteristic	Neisseria meningitidis	Neisseria polysaccharea
Gram stain	Gram-negative diplococcus	Gram-negative diplococcus
Oxidase	Positive	Positive
Acid production from glucose	Positive	Positive
Acid production from maltose	Positive	Positive
Polysaccharide from sucrose test	Negative	Positive
Nitrate reduction test	Nitrate negative	Nitrate negative
Pigmentation	Non-pigmented	Non-pigmented
Colistin	Resistant	Usually susceptible

Cunningham et al. 2014. J Clin Microbiol. 52: 2270-2271. Deak et al. 2014. J Clin Microbiol. 52: 3496. https://www.cdc.gov/std/gonorrhea/lab/npol.htm

Neisseria spp. and MALDI-TOF MS

- \bullet MALDI-TOF MS does not always accurately identify Neisseria species
- Commonly misidentified:
 - N. cinerea, N. polysaccharea, N. meningitidis, N. subflava, N. mucosa...
- N. polysaccharea frequently misidentified as N. meningitidis
 Result can be a cascade of unnecessary reactions
 Public health, patient care, management of exposure for laboratory personnel and close contacts of the patient
- Laboratory safety—caution needed when working with any suspected Neisseria strain
- Misidentification of N. gonorrhoeae less common but does occur Cunningham et al. 2014. J Clin Microbiol. 52: 2270-2271. Deak et al. 2014. J Clin Microbiol. 52: 3496. Hong et al. 2019. Clin Micro Infect. 25: 717-722. Buchanan et al. 2016. Clin Micro Infect. 22: 815.e5-815.e7.

CDC/FDA Strain Bank

Neisseria species MALDI-TOF Verification (30)

This panel contains a representative number of Neisseria species including 6 N. gonorrhoeae, 5 N. meningitidis, 17 other Neisseria species, 1 Kingella denitrificans, and 2 Moraxella catarrhalis. This will allow PHLs to have access to a rare collection of commensal Neisseria species for identification verification purposes.

This panel can be supplemented with additional *Neisseria gonorrhoeae strains* : https://wwwn.cdc.gov/ARIsolateBank/Panel/Panel/Panel/Detail?ID=1158

https://wwwn.cdc.gov/ARIsolateBank/Panel/Allisolate

Limitations Associated with MALDI-TOF MS

Limitation/Pitfall	Possible Approach to Resolution
MALDI-TOF MS cannot resolve these organisms	Will vary by specimen type and local epidemiology. Supplemental biochemical testing.
Highly similar, MALDI-TOF MS may misidentify	Be aware of manufacturer specific claims Supplemental testing (optochin, bile solubility)
Difficulty resolving to species level	Consider reporting to genus-level, if appropriate Additional biochemical and/or molecular testing if needed
Large complex of closely related species; specific clinical significance and/or accuracy of identification within the complex not well defined	Consider reporting as Enterobacter cloacae complex
May misidentify N. cinerea and N. polysaccharea	Supplemental testing as needed
	Limitation/Pitfall MALDI-TOF MS cannot resolve these organisms Highly similar, MALDI-TOF MS may misidentify Difficulty resolving to species level Large complex of closely related species; specific clinical significance and/or accuracy of identification within the complex not well defined May misidentify N. cinerea an N. nolvescrbarea

Reporting Considerations

- · Level of resolution for reporting
 - Single positive blood cultures with coagulase negative staphylococci, coryneforms, etc. More information is not always better
 - "Group B Streptococcus" vs. Streptococcus agalactiae

 - Unusual identifications Group/complex level identifications

Examples of Microorganisms Reported to Species or Subspecies

Table 6. Examples of Microorganisms That Should Always Be Reported to the Species or Subspecies

Organism	Rationale
Streptococcus gallolyticus subsp. gallolyticus	Established association with gastrointestinal neoplasm
Trueperella pyogenes (Arcanobacterium pyogenes)	Pathogenic potential
Corynebacterium urealyticum from urine	Associated with renal calculi when found in urine specimens
Corynebacterium ulcerans	Pathogenic potential
Corynebacterium diphtheriae	Public health importance, pathogenic potential
Clostridium septicum from blood	Established association with gastrointestinal neoplasm
Staphylococcus lugdunensis	Pathogenic potential
Staphylococcus pseudintermedius	Pathogenic potential

CLSI M58 1st ed. 2017.

Reporting Considerations

- Level of resolution for reporting
 - Single positive blood cultures with coagulase negative staphylococci, coryneforms, etc.
 - More information is not always better • "Group B Streptococcus" vs. Streptococcus agalactiae
 - Unusual identifications
 - Group/complex level identifications

"Trusted list"

Bruker MALDI-TOF Result:	Report:	Additional Notes	Cerner Code	Acceptable Score
Finegoldia magna	Finegoldia magna		FMAG	≥ 1.8
Flavobacterium Endanitolerans	Flavobacterium species		FLAV	≥ 2.0
Flavonifractor plauti	Flavonifractor species		FLAVON	≥1.8
Fusobacterium necrophorum	Fusobacterium necrophorum		FNEC	≥ 1.8
Fusobacterium gonidaformans	Fusobacterium gonidaformans		FGON	≥ 1.8
Fusobacterium mortiferum	Fusobacterium mortiferum		FMOR	≥ 1.8
Fusobacterium nucleatum	Fusobacterium nucleatum		FNUC	≥1.8
Gemella haemolysans	Gemella haemolysans		GHAE	≥1.8
Gemella morbillorum	Gemella morbiliorum		GMOR	≥1.8
Gemella sanguinis	Gemella sanguinis		GSANG	≥ 1.8
Gemella spp. (other than species on the trusted list)	Gemella species		GEME	≥1.8
Geotrichum capitatum	Geotrichum capitatum		GCAP	≥ 1.7
Gordonia spp.	Gordonia species		GORD	≥1.7
Granulicatella adlacens	Granulicatella adiacens		GADI	≥1.8
		Send to the State Public Health Lab		
Haemophilus influenzae	Haemophilus influenzae	for scrotyping if from an invasive	HINF	≥ 2.0
Lactobacillus acidophilus	Lactobacillus acidophilus		LACI	≥1.8
Lactobacillus casei	Lactobacillus casei		LCAS	≥1.8
Lactobacillus paracasei	Lactobacillus paracasei		UPAR	≥1.8
Lactobacillus rhamnosus	Lactobacillus rhamnosus		URHA	≥1.8
Lactobacillus spp. (other than species on the trusted list)	Lactobacillus species		LACTO	≥1.8
Lactococcus garvieae	Lactococcus garvieae		LGAR	≥1.8
Lactococcus lactis	Lactococcus lactis		LLAC	≥1.8
Lautropia mirabilis	Lautropia species		LAUT	≥ 1.8
Leclercia adecarboxylata	Leclercia adecarboxylata		LADE	≥1.8
Legionella longbeachae	Legionella longbeachae	FREEZE all isolates	LLON	≥ 2.0
		FREEZE all isolates		
Legionella pneumophilia	Legionella pneumophilia	Send all isolates to the State Public	LEGI	≥2.0
		Health Lab		
Leuconostoc mesenteroides	Leuconostoc species		LEUC	≥1.8
Leuconostoc pseudomesenteroides	Leuconostoc species		LEUC	≥1.8

Ongoing Microbiology Expertise: Strategies

Biochemical of the week

- Select a biochemical, demo, explain principle, prepare a 1
- page handout 2 to 5 minute
- presentation/discussion
- Include a picture of the reaction or results
- Create a library of the documents

Microbiology expertise is essential!

- MALDI-TOF MS has revolutionized the practice of clinical microbiology Laboratory work up and work flow
- · Informing the clinical significance/biology of microorganisms
- Ongoing microbiology expertise is essential!
 • Correlating MALDI-TOF MS with colony morphology, Gram stain, etc.

 - Recognizing and reporting "new" microorganisms
 Communicating the significance of these "new" microorganisms to the healthcare team
 Recognizing AST implications

 - Recognizing and responding when MALDI-TOF gets it wrong
 - Biosafety

